2,614 research outputs found

    Dreaming of atmospheres

    Get PDF
    Here we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrievals of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep belief neural (DBN) networks trained to accurately recognise molecular signatures for a wide range of planets, atmospheric thermal profiles and compositions. Reconstructions of the learned features, also referred to as `dreams' of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work towards retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.Comment: ApJ accepte

    Hierarchic Superposition Revisited

    No full text
    Many applications of automated deduction require reasoning in first-order logic modulo background theories, in particular some form of integer arithmetic. A major unsolved research challenge is to design theorem provers that are "reasonably complete" even in the presence of free function symbols ranging into a background theory sort. The hierarchic superposition calculus of Bachmair, Ganzinger, and Waldmann already supports such symbols, but, as we demonstrate, not optimally. This paper aims to rectify the situation by introducing a novel form of clause abstraction, a core component in the hierarchic superposition calculus for transforming clauses into a form needed for internal operation. We argue for the benefits of the resulting calculus and provide two new completeness results: one for the fragment where all background-sorted terms are ground and another one for a special case of linear (integer or rational) arithmetic as a background theory

    Ferromagnetic coupling and magnetic anisotropy in molecular Ni(II) squares

    Full text link
    We investigated the magnetic properties of two isostructural Ni(II) metal complexes [Ni4Lb8] and [Ni4Lc8]. In each molecule the four Ni(II) centers form almost perfect regular squares. Magnetic coupling and anisotropy of single crystals were examined by magnetization measurements and in particular by high-field torque magnetometry at low temperatures. The data were analyzed in terms of an effective spin Hamiltonian appropriate for Ni(II) centers. For both compounds, we found a weak intramolecular ferromagnetic coupling of the four Ni(II) spins and sizable single-ion anisotropies of the easy-axis type. The coupling strengths are roughly identical for both compounds, whereas the zero-field-splitting parameters are significantly different. Possible reasons for this observation are discussed.Comment: 7 pages, 7 figure

    Field dependent anisotropy change in a supramolecular Mn(II)-[3x3] grid

    Full text link
    The magnetic anisotropy of a novel Mn(II)-[3x3] grid complex was investigated by means of high-field torque magnetometry. Torque vs. field curves at low temperatures demonstrate a ground state with S > 0 and exhibit a torque step due to a field induced level-crossing at B* \approx 7.5 T, accompanied by an abrupt change of magnetic anisotropy from easy-axis to hard-axis type. These observations are discussed in terms of a spin Hamiltonian formalism.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let

    Quantum dynamics of the Neel vector in the antiferromagnetic molecular wheel CsFe8

    Full text link
    The inelastic neutron scattering (INS) spectrum is studied for the antiferromagnetic molecular wheel CsFe8, in the temperature range 2 - 60 K, and for transfer energies up 3.6 meV. A qualitative analysis shows that the observed peaks correspond to the transitions between the L-band states, from the ground state up to the S = 5 multiplet. For a quantitative analysis, the wheel is described by a microscopic spin Hamiltonian (SH), which includes the nearest-neighbor Heisenberg exchange interactions and uniaxial easy-axis single-ion anisotropy, characterized by the constants J and D, respectively. For a best-fit determination of J and D, the L band is modeled by an effective SH, and the effective SH concept extended such as to facilitate an accurate calculation of INS scattering intensities, overcoming difficulties with the dimension of the Hilbert space. The low-energy magnetism in CsFe8 is excellently described by the generic SH used. The two lowest states are characterized by a tunneling of the Neel vector, as found previously, while the higher-lying states are well described as rotational modes of the Neel vector.Comment: 12 pages, 10 figures, REVTEX4, to appear in PR

    Identification of a novel vitispirane precursor in Riesling wine

    Get PDF
    Glycoconjugated forms of diastereoisomeric 1-(3-hydroxybutyl)-6,6-dimethyl-2-methylene-3-cyclohexen-1-ols have been identified as new natural vitispirane precursors in Riesling wine. Model degradation studies carried out with synthetic references of the precursors showed the easy formation of isomeric vitispiranes at pH conditions of wine. Based on these results a hypothetic pathway for vitispiranes in Riesling wine is proposed.Identifizierung eines neuen Vitispiranvorläufers in RieslingweinZwei Diastereomere von 1-(3-Hydroxybutyl)-6,6-dimethyl-2-methylen-3-cyclohexen-1-ol wurden erstmals als Aglykone in Glykosidextrakten von Rieslingwein identifiziert. Modellreaktionen bei pH 3,2 lieferten die isomeren Vitispirane als Hauptabbauprodukte. Aufgrund dieser Ergebnisse wird ein erweitertes Modell zur Vitispiranbildung in Rieslingwein vorgestellt

    A new look at Spitzer primary transit observations of the exoplanet HD189733b

    Get PDF
    Blind source separation techniques are used to reanalyse two exoplanetary transit lightcurves of the exoplanet HD189733b recorded with the IR camera IRAC on board the Spitzer Space Telescope at 3.6μ\mum during the "cold" era. These observations, together with observations at other IR wavelengths, are crucial to characterise the atmosphere of the planet HD189733b. Previous analyses of the same datasets reported discrepant results, hence the necessity of the reanalyses. The method we used here is based on the Independent Component Analysis (ICA) statistical technique, which ensures a high degree of objectivity. The use of ICA to detrend single photometric observations in a self-consistent way is novel in the literature. The advantage of our reanalyses over previous work is that we do not have to make any assumptions on the structure of the unknown instrumental systematics. Such "admission of ignorance" may result in larger error bars than reported in the literature, up to a factor 1.61.6. This is a worthwhile trade-off for much higher objectivity, necessary for trustworthy claims. Our main results are (1) improved and robust values of orbital and stellar parameters, (2) new measurements of the transit depths at 3.6μ\mum, (3) consistency between the parameters estimated from the two observations, (4) repeatability of the measurement within the photometric level of ∼2×10−4\sim 2 \times 10^{-4} in the IR, (5) no evidence of stellar variability at the same photometric level within 1 year.Comment: 43 pages, 18 figure
    • …
    corecore